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Group velocity of acoustic waves in strongly scattering media:
Dependence on the volume fraction of scatterers
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We study, both experimentally and theoretically, the ballistic propagation of ultrasonic wave pulses through
a random strongly scattering medium as a function of the volume fraction of the scatterers. The scattering
medium consists of a liquid suspension of monodisperse glass beads, whose concentration is varied by con-
trolling the upward flow of the liquid in a fluidized bed. At intermediate frequencies, where the acoustic
wavelengthl is comparable to the size of the glass bead scatterers, very strong scattering is observed, with the
scattering mean free path reaching values as low asl/2. At high volume fractions of scatterers, the scattering
results in pronounced dispersion, as demonstrated experimentally by the strong frequency dependence found in
both the phase and group velocities. However, as the volume fraction is lowered, the dispersion is substantially
reduced, in marked contrast to recent predictions for electromagnetic waves. Our experimental results are
explained quantitatively by a theoretical model, based on a spectral function approach, that accounts for the
renormalization of the scattering within the medium, an effect that is greatest when the concentration of
scatterers is largest. The mechanisms underlying the frequency dependence of the velocities and their depen-
dence on volume fraction are further elucidated by examining the ultrasonic energy density, both inside the
scatterers and in the surrounding fluid. This allows us to show that the velocities are substantially slowed down
both by~i! resonant scattering from the glass spheres, where energy is trapped within the solid scatterers, and
by ~ii ! tortuosity effects, where the wave energy is largely confined to the tortuous fluid pathways. These
results demonstrate convincingly why the phase and group velocities of acoustic waves vary strongly with
frequency at high volume fractions of scatterers, but only show weak dispersive effects at low volume frac-
tions. Furthermore, our microscopic picture of the dispersion gives a simple physical explanation of why its
volume fraction dependence is opposite to that expected for light and other electromagnetic waves, where the
velocity inside the scatterers is normally less than in the surrounding medium.@S1063-651X~98!10910-8#

PACS number~s!: 43.35.1d, 43.20.1g, 62.30.1d
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I. INTRODUCTION

In recent years there has been renewed interest
progress in the study of the propagation of classical wave
strongly scattering inhomogeneous media@1,2#. For ex-
ample, the realization that the diffusion approximation giv
an excellent description of the propagation of multiply sc
tered classical waves has facilitated the investigation and
planation of a wide range of fascinating wave phenomen
strongly scattering materials; these include coherent ba
scattering, continuous-wave transmission, pulse propaga
and frequency, spatial, and temporal correlations@3–10#. De-
spite this progress, relatively little attention has been paid
such materials to the weak ballistic component of the to
wave field that propagates through the medium without s
tering out of the forward direction. In a pulsed experime
this ballistic signal carries important information about t
medium, including the behavior of the phase and group
locities vp andvg , as well as the scattering mean free pa
l s . Of particular interest is the behavior of the group velo
ity. In the intermediate frequency regime, where the wa
length is comparable to the size of the inhomogeneities,
strong scattering may lead to very large dispersion, with
possible result that the group velocity may exhibit anom
lous behavior similar to that observed for optical propagat
in homogeneous~on the scale of the wavelength! absorbing
PRE 581063-651X/98/58~5!/6626~11!/$15.00
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dielectric materials@11–19#. In fact, calculations of the
group velocity for light propagation in a colloidal suspensi
of strongly scattering particles@20–22# predicted that the
group velocity becomes strongly anomalous, exceeding
speed of light in vacuum over a substantial range of frequ
cies and supporting the idea that the group velocity co
pletely loses its physical significance as the velocity of b
listic energy transport in such circumstances. Howev
recent measurements for acoustic waves@23# have shown
that the group velocity can remain well defined even in
presence of strong resonant scattering, although the sca
ing does cause the velocity to vary strongly with frequen
These acoustic experiments were explained using a spe
function approach, which demonstrated how the group
locity could be accurately calculated when there is stro
scattering due to shape resonances@23#.

While these recent experiments might appear to have
solved these questions about the nature of the group velo
in the intermediate frequency regime of multiply scatteri
materials, important questions remain concerning the dep
dence of the group velocity on the volume fractionf of the
scatterers. The original calculations for light@20,21# were
done at low volume fractions, while the acoustic measu
ments were performed at high volume fractions. Recentl
has been suggested that the pronounced dispersion pred
for electromagnetic waves at low volume fractions of sc
terers becomes washed out at high volume fracti
6626 © 1998 The American Physical Society
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@2,24,25#, possibly offering an explanation for the diffe
ences between the previous optical and acoustic results.
interesting implication of these predictions is that the gro
velocity for acoustic waves might have an even stronger
quency dependence at low volume fractions than at high
ume fractions and could indeed exhibit anomalous behav
after all.

In this paper we investigate this question both experim
tally and theoretically by studying the ballistic propagati
of acoustic wave pulses through a strongly scattering m
rial as a function of the volume fraction of scatterers@26#.
The scattering medium consists of monodisperse glass b
suspended in a liquid mixture of water and glycerol, whe
the impedance mismatch ratio for longitudinal acous
waves has a large value of approximately 7. The volu
fraction of the glass beads was varied by fluidizing the s
pension to counteract the sedimentation of the beads, al
ing f to be readily adjusted by controlling the flow rate. A
high volume fractions of scatterers, pronounced dispersio
observed, consistent with previous measurements of
group and phase velocities in a similar system of rando
close-packed glass beads in water@23#. However, as the vol-
ume fraction is lowered, the variation of the velocities w
frequency is progressively reduced, in marked contrast to
recent predictions for light@2,24,25#. We interpret these re
sults using an effective medium model@23,27–29#, based on
a spectral function approach, in which each scattering un
treated as an elastic sphere coated with a layer of liquid. T
model shows how the substantial increase in the disper
with volume fraction can be explained in terms of a ren
malization of the effective medium in which the scattere
are embedded, an effect that becomes larger as the vo
fraction f increases. In contrast to the usual situation
light, the elastic wave velocities inside the scatterers
larger than in the surrounding fluid; thus it is possible to tr
acoustic wave energy in the pockets of fluid between
glass bead scatterers, an effect that becomes especially
nounced at high volume fractions of scatterers when the fl
interstices become more enclosed. This effect is accura
captured by our coated sphere effective medium mo
which gives an excellent description of the experimental d
for the phase and group velocities, successfully elucida
the underlying physics of the strong volume fraction dep
dence of the dispersion resulting from acoustic shape r
nances in the intermediate frequency regime.

II. EXPERIMENT

The volume-fraction dependence of ballistic transport w
investigated experimentally using pulsed ultrasonic te
niques because their ability to detect the field, rather than
intensity, allows the weak ballistic pulse to be detected e
when it is buried in a much larger incoherent signal due
multiply scattered sound. To vary the volume fraction
scatterers in our system, we used a sample cell consistin
a fluidized bed, in which a 75% glycerol–25% water mixtu
flowed upward to counteract the sedimentation of suspen
glass beads. This choice of fluid was made to allow the be
to be conveniently suspended using modest flow velocit
while avoiding the unwanted absorption associated with v
high fluid viscosities. The glass beads were monodispe
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p
-
l-
ur

-

e-

ds
e
c
e
-

w-

is
he
ly

e

is
is
on
-
s
me
r
re
p
e
ro-
id
ly
l,

ta
g
-
o-

s
-
e
n
o
f
of

ed
ds
s,
y
e,

with an average radiusa50.438 mm, having been sieve
from a polydisperse distribution of spheres to limit the ra
to a narrow range between 0.425 and 0.45 mm. The mate
properties of the glass beads and fluid resulted in a very la
mismatch in the acoustic impedancerv since the speed o
sound in the fluid is 1.84 mm/ms and its density is 1.20
3103 kg/m3, while the longitudinal velocity in the glass i
5.6 mm/ms, the transverse velocity in the glass is 3.4 mm/ms,
and the density is 2.503103 kg/m3. Thus very strong scat
tering is expected in the intermediate frequency regime. T
sample cells were constructed, each with two plastic w
separated by metal spacers, which set the thicknessL of the
samples to be either 7.76 or 12.2 mm, corresponding
proximately to 9 or 14 bead diameters, respectively. T
liquid, pumped in from the bottom of the cell, pass
through a diffuser to achieve an even flow across the c
The fluid pump was driven by a variable speed electric m
tor, giving fine control over the flow rate. Since the settli
speed of the beads depends on the volume fraction, chan
the flow rate in the fluidized bed allowedf to be easily
varied over an extended range of values.

The measurements were performed in a large tank of
ter in order to provide efficient coupling between ultrason
transducers and the sample. Several pairs of fairly wide-b
1-in.-diam plane-wave ultrasonic transducers were used,
transducer to generate the input pulse and the other to rec
the transmitted signal. Each pair had a different central
quency, ranging from 1 to 5 MHz, allowing the samples
be studied for wavelengths ranging from 0.8 to 6 bead ra
The transducers were aligned along a common axis with
sample cell placed between them, in the far field of the g
erating transducer.

The transmitted wave form that was detected by the
ceiving transducer contained two components, a small ba
tic pulse that consists of the unscattered or forward-scatte
waves and a larger scattered component that is superimp
on the ballistic pulse at early times but also extends to m
longer times as progressively longer and longer multi
scattering path lengths are traversed by the ultrasonic p
@Figs. 1~a! and 1~b!#. To measure the group and phase v
locities, we need to extract this ballistic pulse from the dom
nant multiply scattered waves. This can be achieved in ul
sonic experiments using piezoelectric transducers by tak
advantage of the fact that the ballistic pulse is coherent, b
spatially and temporally with the incident pulse, while,
contrast, the scattered waves arrive incoherently at the de
tor on account of the different path lengths traveled throu
the sample and the different angle-dependent phase s
experienced on scattering. Since the transducer detects
averageinstantaneous field of the transmitted wave over
front face of the piezoelectric element, much of the scatte
ultrasound is canceled in the detector due to the rand
phase fluctuations of the scattered waves across the tr
ducer face, provided the area of the detector is larger than
speckle size~or coherence area!. In our experiment, in which
the detector is placed in the near field, the speckle size of
scattered waves is of order the square of the wavelength@6#,
so that, typically, several hundred speckles interfere dest
tively in the detector, giving good cancellation of the sc
tered component of the wave field and leaving the spati
coherent ballistic pulse unaffected. To further cancel sc



a
e

th
si

a
a
a
th
r
n
i

th
io

e
n
o

a

e
v
ad
d
ch
tt
n
p
ld
er
a

tio.
of

ging

put
ded

, we
tic
and
rms

ig.
he
m
y-

cies,
le
per
e.

the
out
he

tion
h

e

the
vel
h.
to

ncy

n

e
rg

n

a
e
in
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tered sound we also averaged the detected signal over m
repetitions of the input pulse using a digital oscilloscop
The beads were in continuous random motion, moving
mean distance that was negligibly small over the time
pulse takes to travel through the sample, but which was
nificant ~appreciable compared to the wavelength! over the
time between repetitions of the input pulse. Thus the aver
over many repetitions of the input pulse was in effect
average over many different ensembles of the scatterers
led to further cancellation of the scattered component of
transmitted sound, as is demonstrated in Fig. 1. In orde
measure the full transmitted ultrasonic field for this demo
stration, we replaced the 1-in.-diam detecting transducer w
a miniature hydrophone, which had a size smaller than
ultrasonic wavelength, thereby avoiding phase cancellat
across the face of the detector. In Figs. 1~a! and 1~b! we
compare the detected fields at two volume fractions, resp
tively, by overlaying the detected fields for ten different e
sembles of the scatterers. At the lower volume fraction
0.20 where the scattering is weaker@Fig. 1~a!#, evidence of
the coherent component of the field can be seen by eye,
substantial fraction of the detected field at early times~the
first six or seven oscillations in the pulse! arrives in phase for
each ensemble of the beads; the ballistic signal that is
tracted by ensemble averaging the transmitted signal o
10 000 realizations of the random configurations of the be
is shown in Fig. 1~c!. When the volume fraction is increase
to 0.40, the true power of this configuration averaging te
nique becomes manifest. As a result of the increased sca
ing, the relative amplitude of the ballistic to scattered sou
is decreased and a coherent component is not readily ap
ent @Fig. 1~b!#; however, after ensemble averaging the fie
again over 10 000 configurations of the beads, the scatt
fields are effectively eliminated and the small ballistic sign

FIG. 1. Transmitted wave forms at volume fractions of 0.20 a
0.40, for several representative bead configurations@~a! and ~b!,
top#, showing the superposition of the coherent~ballistic! and inco-
herent~scattered! components of the total field. The ballistic puls
is extracted by ensemble averaging the total fields over a la
number of bead configurations, 10 000 in this example@~c! and~d!,
bottom#. Here the central frequency in the pulse was 2.5 MHz a
the sample thickness wasL57.76 mm. At this frequency, the ratio
of sample thickness to mean free pathL/ l s is 4.3 and 8.1 for
f50.20 and 0.40, respectively.
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clearly emerges with an excellent signal-to-noise ra
Through the use of a large detector, further cancellation
scattered signal was achieved before ensemble avera
was performed.

Most of the experiments were performed using short in
pulses, so that the frequency content of the pulse exten
over the entire frequency spectrum of the transducer~ap-
proximately 50% of the central frequency!. To measure the
frequency dependence of the scattering mean free path
first digitized the input pulse and the unscattered ballis
pulse, determined using the technique described above,
then compared the magnitudes of the fast Fourier transfo
~FFTs! of the pulses as shown in Fig. 2~a! for a sample with
a volume fraction of 0.45 and a thickness of 7.76 mm. In F
2~b! we show the ratio of the two FFTs, thus determining t
magnitude of the ballistic signal over a bandwidth fro
about 1 to 3.5 MHz by compensating for the frequenc
dependent response of the transducers. At low frequen
the ratio is almost unity, showing that there is very litt
attenuation of the ballistic pulse, corresponding to the up
end in frequency of the weak Rayleigh scattering regim
However, as the frequency is increased above 1 MHz,
ratio drops precipitously, reaching a deep minimum at ab
2 MHz as a result of the strong scattering in the sample. T
square of this ratio gives the frequency-dependent reduc
in the transmitted intensity of the ballistic signal, from whic
the scattering mean free pathl s was determined using th
definition

I

I 0
5exp@2L/ l s#, ~1!

whereI is the transmitted intensity,I 0 is the input intensity,
and L is the sample thickness. For the thicker sample,
corresponding FFT ratio disappeared into the noise le
near the minimum at 2 MHz, requiring a different approac
In order to take transmission data in this region, we had
use a series of longer pulses, each with a narrow freque

d

e

d

FIG. 2. The top panel shows the fast Fourier transforms~FFTs!
of the input pulse and the ballistic pulse transmitted through
sample withf50.45 andL57.76 mm. The bottom panel shows th
ratio of the transmitted to input FFTs, revealing a deep minimum
the transmission near 2 MHz where the scattering is strongest.
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bandwidth centered on the frequency of interest, thereby
cluding from the pulse any large high or low frequency co
ponents that would have saturated the detection electroni
the increased sensitivity needed to measure these weak
nals.

To measure the group and phase velocities, we used F
to digitally filter the detected pulses to form Gaussian pul
with a relatively tight bandwidth~,10%! centered at severa
frequencies spanning the bandwidth of the pulse. An
ample of this technique is shown in Fig. 3 for data taken a
volume fraction of 0.45, some of which is identical to th
used to generate the FFTs shown in Fig. 2. The unfilte
short pulses in the first column show very strong dispers
effects, with a clear separation of faster high frequency co
ponents in the pulse from slower low frequency compone
an effect that becomes more pronounced as the sample t
ness increases and the pulse becomes broader and mor
torted. It is interesting that these results are reminiscen
the effects predicted for electromagnetic pulse propagatio
dispersive dielectrics with strong resonant absorption,
originally described using asymptotic methods by Somm
feld @30# and Brillouin @31# and more recently by Oughstu
and co-workers@12,18#. Evidently, the propagation of thi
short distorted pulse cannot be described by a single valu
the group velocity. However, the frequency dependence
both the group and phase velocitiescan be accurately deter
mined from these data by using a Gaussian filter function
narrow the frequency bandwidth of the pulse, so that disp
sive distortion of the pulse is reduced and the group velo
description of pulse propagation is appropriate. The res
of this filtering process for two central frequencies of 2.7 a
1.7 MHz are shown in the second and third columns of F
3, respectively. Although small dispersion effects can still
seen in the slight broadening of the pulses with increas
sample thickness, the filtered pulses have a well defined
tral frequency and have symmetric peaks, so that both
phase and group velocities can be determined. The p
velocity was measured from the time taken by the car
frequency oscillations to travel through both of the samp

FIG. 3. The first column shows the unfiltered short input pu
and the resulting transmitted pulses through two sample thickne
~L157.76 mm andL2512.2 mm!. The second and third column
show the result of digitally filtering these short pulses at two diff
ent central frequencies, indicated at the top of the figure.
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using the condition that the velocity must be independen
sample thickness to resolve the possible ambiguity of one
more multiples of 2p in the total phase shift of the transmi
ted pulse and hence to identify the phase velocity correc
Simple inspection of Fig. 3 indicates that the pulses at
MHz travel faster than the 1.7-MHz pulses, confirming th
the group velocity is slower at the lower frequency. T
group velocity was measured quantitatively by determin
the envelopes of the incident and transmitted pulses, mea
ing the time interval between the peaks of the two pu
envelopes, and calculating the velocity from the ratio
sample thickness to pulse envelope propagation time.

III. RESULTS AND DISCUSSION

Using the experimental techniques described in the p
ceding section, we investigated the ballistic propagation
ultrasound through samples with volume fractions of gla
beads ranging from 0.21 to 0.61. Some of our measurem
of the phase velocity at four volume fractions in this ran
are shown in Fig. 4. At the lowest volume fraction, the pha
velocity is very close to the velocity of sound in the bu
fluid, indicated by the dashed line, over the entire freque
range. However, as the volume fraction is increased, a st
ger frequency dependence develops, reaching a maxim
variation with frequency of about 40% atf50.61, which is
about 7 times greater than atf50.21. Our group velocity
data ~Fig. 5! show the same volume fraction trends, wi
relatively little dependence on frequency at the lowest v
ume fraction but with progressively larger variations in t
frequency dependence of the velocity as the volume frac
increases. The variation of the group velocity is in gene
much larger than that of the phase velocity; for the m

e
es

-

FIG. 4. Phase velocitiesvp at four different volume fractions,
plotted against frequency normalized by the fluid velocity and b
radius. The data~symbols! are compared with the predictions of ou
effective medium theory~solid lines!. The dashed line represen
the velocity of sound in the bulk fluid.
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concentrated sample the group velocity changes by m
than a factor of 2, reaching values less than 1 mm/ms near
the rather sharp minimum atkfa'2 – 2.5. Near this mini-
mum, the group velocity is well below all the bulk velocitie
of both the solid and fluid constituents of the sample, s
gesting that the scattering is having a strong effect on
ballistic propagation at the higher volume fractions. Me
surements of the scattering mean free path~Fig. 6! shed fur-
ther light on the connection between strong scattering
the propagation velocities. The mean free path has a
nounced dip forkfa between 2 and 3, which corresponds
the dips seen in both the phase and group velocities. T
means that when scattering is at its strongest, the w
speeds of the ballistic pulse are greatly reduced. Carefu

FIG. 5. Frequency dependence of the group velocitiesvg at four
volume fractions, showing a comparison of the data~symbols! with
our effective medium theory~solid lines!. The dashed line repre
sents the velocity of sound in the bulk fluid.
re

-
e
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d
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is
ve
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spection of the figure shows that the position of the mi
mum in the mean free path moves to slightly lower freque
cies asf increases; the positions of the minima in the pha
and group velocities also show the same trend, confirm
that the reduction in the wave velocities is caused by sca
ing. The scattering mean free path data also indicate tha
scattering in this system becomes very strong in this
quency range, as demonstrated by the fact that at the m
mum in l s for f50.61, the mean free path becomes sma
than one-half the wavelength of sound in the sample.

The results of these experiments show that despite
strong scattering, the group velocity is well behaved, exh
iting no anomalous properties such as negative or infin
values, over the entire range of frequencies and volume f
tions investigated. One of the most striking features of o
experimental results is the strong volume fraction dep
dence of both velocities. At low volume fractions there
weak dispersion, i.e., the velocities have little frequency
pendence, but as the volume fraction is increased the dis
sion increases dramatically. At high volume fractions th
strong dispersion is similar to that found in our earlier e
periments@23# on randomly close-packed~f50.63! glass
beads in water. Our current results show clearly that the v
ume fraction dependence of the dispersion seen in this ac
tic system is opposite to that predicted for electromagn
waves@2,24,25#. Thus the idea that the most dramatic d
persion effects should be observed at low volume fracti
of scatterers does not apply in acoustics, a result that we
explain theoretically using a simple spectral function a
proach.

To interpret these experimental results, we use a spe
function approach, which transcends the limitations of
traditional coherent potential approximation~CPA! and al-
lows coherent wave propagation to be described quan
tively in the strongly scattering intermediate frequency
gime where the wavelength is comparable to the size of
inhomogeneities@23,27–29#. To express this approach math
ematically, let us first use the scalar wave case to illustr
the basic principles, although the actual calculations to
fully into account the elastic nature of ultrasonic waves
the solid spheres, presented in the Appendix. The sc
wave equation may be written as
-

o-
FIG. 6. Scattering mean free pathl s /a at four
volume fractions. The data~symbols! are com-
pared with the predictions of the effective me
dium theory~solid lines! and with the calculation
of l s from the scattering cross section of an is
lated glass sphere in the fluid.
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S ¹21
v2

v2~r ! Dc50, ~2!

wherec denotes the wave amplitude andv(r ) is the local
phase velocity. A slightly different way of writing the sam
equation is to add and subtract a constant term

F¹21
v2

v0
22S v2

v0
22

v2

v2~r ! D Gc50. ~3!

Here v0 is an ‘‘effective medium’’ wave speed, which i
treated as a dummy variable. One can write the configu

tionally averaged Green’s functionGe(v,kW ) as

Ge~v,kW !5
1

v2/v0
22k22Sv0

~v,kW !
, ~4!

whereSv0
is the self-energy calculatedrelative to the refer-

ence medium speedv0 and kW is the Fourier transform vari
able of rW. To the leading order in the density of scatterer

Sv0
'ntv0

~0!, ~5!

where n is the density of the scatterers andtv0
(0)

5 f v0
(0)/4p, f v0

(0) being the forward-scattering amplitud
In a colloidal suspension, the inhomogeneous medium m
be viewed as a collection of basic units consisting of coa
spheres, shown in Fig. 7. The scattering problem is there
that of a coated sphere embedded in a homogenized effe
medium whose wave speed is given byv0 , identified at each
(v,kW ) point asv05v/k. The scattering amplitude can the
be obtained as the solution to the corresponding bound
value problem, as discussed in the Appendix. Thus, from
~5! we obtain the complex values of the self energySv0

5Sv/k(v) at each point in thev-k plane. Coupled with the
condition thatv05v/k, the Green’s function is then give
by Ge(v,kW )52Sv/k

21 (v).
The traditional CPA condition for the determination of th

effective medium velocityv0 is that

Re Sv0
>n Re@ tv0

~0!#50. ~6!

However, in the strongly scattering intermediate frequen
regime,S becomesk dependent. As a result, the solution

FIG. 7. In a random medium composed of a dispersion
spheres~a!, the basic structural unit may be regarded as a coa
sphere~b! embedded in a uniform medium of speedv05v/k.
a-

y
d
re
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ry
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y

Eq. ~6! can either disappear, jump abruptly asv varies, or
become multivalued. In other words, the meaning of
CPA solutions becomes suspect. Instead of adopting
CPA condition, we find the excitations of the system
looking for the maxima of2Im Ge(v,kW)5Im Sv/k

21(v), the so-
called spectral function. Since the self-energySv/k(v) is
proportional to the forward-scattering amplitude, the pea
in the spectral function occur at the values ofv andk when
the scattering is a minimum and thus identify the propagat
modes of the system. From Eq.~4! it can also be seen tha
the spectral function peaks atv25v0

2k2 when the CPA con-
dition ~6! is satisfied. Thus the spectral function approa
reproduces the CPA in the low frequency regime where i
successful. Moreover, ImS gives the width of the peaks. A
Im S→0 ~true uniform medium!, the peaks approachd func-
tions. In the intermediate frequency regime the peaks ge
ally possess finite widths, implying that the modes identifi
by the spectral function peaks are quasimodes.

In Fig. 8 we show a contour plot of the spectral functio
in the frequency–wave-vector plane for two representa
values of the glass-bead volume fraction. Note that there
no adjustable parameters in this calculation since the spe
function is determined by the scattering properties of
coated elastic sphere embedded in the effective medi
these are uniquely determined by the velocities and dens
of the glass beads and fluid~given in Sec. II!, the effective
medium density@given by the average density of the mediu
rm5frglass1(12f)rfluid#, and the thickness of the fluid
coating ~determined by requiring that the volume of gla
and fluid be conserved, so thatb/a5f21/3, whereb is the
radius of the coating!. Since the peaks in the spectral fun
tion pick out the quasimodes with the least scattering, th
form the dispersion curve, as shown for the two volume fr
tions illustrated in Figs. 7~a! and 7~b! by the solid white
curves. In a pulse propagation experiment, the frequency~or
more correctly the frequency spectrum! is set by that of the
input pulse and the properties of the medium determine
corresponding wavelength of the excitation that propaga
through the sample. Thus, to determine the dispersion cu
that correctly describe the experimental situation from
spectral function, we use a peak-finding routine that sc
the contour plots for the peak values of wave vector at e
~constant! frequency@32#. The dispersion curves were the
smoothed using a 25-point FFT smoothing routine to elim
nate the high frequency ‘‘pixel’’ noise in the scanned po
tions of the peaks, arising from the finite resolution inv and
k with which the spectral function was calculated. This pr
cedure allows us to determine the true dispersion curve@33#
with sufficient precision to reliably determine the propag
tion velocities from the spectral function.

We determine the phase velocityvp5v/k for each vol-
ume fraction of beads from the ratio of frequency to wa
vector along the dispersion curve, giving the solid curv
shown in Fig. 4. To account for the small 5% variation in t
size of the glass beads, the theory curves were also aver
over the bead size distribution. Excellent quantitative agr
ment with the data is found at all volume fractions, with t
theory correctly predicting the magnitude of the phase vel
ity, as well as both the frequency and volume fraction dep
dence. The group velocityvg5dv/dk is calculated by nu-
merically differentiating the dispersion curve to obtain t
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solid curves plotted in Fig. 5. Again, very good agreemen
with the data is found, with the considerable structure in th
frequency dependence of the group velocity being correc
predicted at all frequencies and volume fractions inves
gated.

The same theoretical model can be used to estimate
scattering mean free path, which is calculated from the sc
tering cross section of the coated elastic sphere~see the Ap-
pendix!. This was determined in two equivalent ways, eithe
from the peak of the spectral function~which is equal to the
imaginary part of the reciprocal of the self-energy! through
the use of the optical theorem or by integrating the square
the scattering amplitude over all angles. Here the model
not as successful, as it underestimates the magnitude of
scattering because it assumes a uniform environment arou
each sphere, in contrast with the actual physical situation
which there are additional contributions to the scatterin
from the random configurations of the neighboring sphere
We account for this effect empirically by dividing the theo
retical predictions by a phenomenological scaling parame
ps , which is taken to be independent of frequency and
obtained by fitting theory to experiment. This fitting param

FIG. 8. ~Color! Contour plot showing the spectral function at
volume fractions of~a! f50.20 and~b! f50.61, as a function of
normalized frequencyva/v f and effective medium wave vectorka.
The magnitude of the spectral function is indicated by the color
with red being high, yellow to green being intermediate, and blu
being low. The dispersion curve~solid white line! is determined by
the peaks in the spectral function and falls below the dispersi
curve for the bulk fluid~dashed line! over most of the frequency
range.
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FIG. 9. ~a! Average energy densities, normalized by the energ
density of the incident wave, in the coated fluid region (E2) and in
the solid core region (E1) plotted as a function of frequency.~b!
Frequency dependence of the ratioE2 /E1 . The large peak atkfa
52.6 corresponds to the first minimum in the velocity dispersio
and the physical situation where the wave energy is largely trapp
in the interconnected fluid pathways.~See Fig. 10.! The arrows
indicate the positions of the scatterer resonances. They corresp
to the three successive minima in the velocity dispersions, se
most clearly in the group velocity data shown in Fig. 5.

FIG. 10. ~Color! Energy contour~in arbitrary units! in a single
scatterer at frequencykfa52.6. The wave is incident on the coated
sphere from the left, as indicated by the arrows. The magnitude
indicated by color, with red being the highest and blue being th
lowest. Note that the energy density indicated by the upper sc
~for the liquid coating! is almost 10 times that indicated by the
lower ~for the solid sphere!.
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eterps is found to range from 1.6 to 2 asf increases from
0.2 to 0.6, consistent with exact multiple sphere scatter
calculations that account explicitly for this additional scatt
ing effect @28#. As shown by the solid curves in Fig. 6, re
sonable agreement with the data is obtained, especiall
high volume fractions, where the theory does an excel
job of predicting the location of the first minimum in th
scattering mean free path. It is worth noting that the coa
sphere calculation is much more successful in predicting
location of this minimum inl s than is a calculation based o
the scattering cross section of single bare glass spher
water, shown by the dashed curves. This demonstrates
power of our effective medium technique in accounting
the multiple scattering effects that are very important at h
volume fractions.

To explain the strong volume fraction dependence of
velocities seen in the experiments, we calculated the ave
energy densities as a function of frequency both inside
glass beads~region 1! and in the fluid coating~region 2!.
This calculation is formulated in Appendix and the results
f50.61 are shown in Fig. 9. The average energy densi
normalized by the energy density of the incident wave,
plotted in Fig. 9~a!. This figure clearly demonstrates that th
energy density in the fluid layer is much higher than in t
solid spheres at all frequencies and delineates the structu
the frequency dependence that results from the scatte
While the normalized energy density in the fluid layer sho
only a weak dependence on frequency at high frequenc
E2 is seen to exhibit a maximum nearkfa'2, corresponding
to the resonant condition that the wavelength in the fl
layerl f equals half the circumference of the solid sphere.
expected, this resonance weakens as the volume fraction
creases and the size of the fluid pockets between the b
increases. In contrast, the energy density in the glass b
E1 exhibits three peaks at higher frequencies, which co
spond to resonant scatterings by the solid spheres. By c
paring Fig. 9~a! with Fig. 5, it can be seen that the peaks
E1 correspond to the high frequency minima of the gro
velocity, indicating that strong resonant scattering can ind
slow down the propagation of acoustic waves. However
should also be noticed that there is no resonant scatterin
the spheres associated with the first and the largest dip in
group velocity. Instead, the energy density ratioE2 /E1 ex-
hibits a strong peak at that frequency, seen in Fig. 9~b!, in-
dicating that most of the wave energy is trapped in the fl
layer. This is clearly delineated in Fig. 10, where the ene
density in a liquid-coated solid sphere, embedded in
renormalized effective medium, is plotted as a function
position forkfa52.6. In this frequency regime, the trappin
of wave energy in the fluid causes wave propagation to s
down via a different physical mechanism: Here the slo
down is due to the tortuosity of the connected fluid pathw
rather than resonant scattering by the solid spheres.

This microscopic picture of wave propagation in o
acoustic system also provides the basis for understan
why the volume fraction dependence of the dispersion
opposite to that found for electromagnetic wav
@2,24,25,34#. For electromagnetic waves, the velocity insi
the solid scatterers is normally lower than in the surround
medium since the scatterers usually have the higher die
tric constant. Consequently, in the vicinity of Mie resonanc
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the electromagnetic energy density is very large inside
scatterers and small outside. At lowf, this leads to a long
dwell time of the waves inside the scatterers and large
persion effects. However, asf increases, the resonances b
come smeared out, as the wave energy that is predomina
concentrated in the scatterers couples from one scatter
the next, and the dispersion is reduced@2,24,25#. In contrast,
in our acoustic experiments the velocities of the elas
waves inside the solid scatterers are higher than in the
rounding medium, causing most of the wave energy to
concentrated in the fluid, as seen in Figs. 9 and 10. A
result, the two mechanisms that lead to wave dispersion
the acoustic case, tortuosity slowdown and resonant sca
ing in the spheres, are both more effective at high volu
fractions of scatterers. It should be clear that the tortuo
effect is most pronounced at larger values off since the
tortuosity of the fluid pathways increases with the volum
fraction of scatterers as the pockets of fluid surrounding
scatterers shrink in size. Moreover, the effect of the reson
scattering in the spheres is to divert some of the wave ene
from the fluid into the spheres, where the waves beco
partially trapped, thus also slowing down the propagati
However, for acoustic waves the majority of the wave ene
still remains in the fluid and as a result the resonances do
become washed out at high volume fractions. Asf increases,
the waves spend a greater fraction of their time partia
trapped in the spheres simply because there are mor
them; thus the magnitude of the dispersion increases co
spondingly, in agreement with our experiments.

IV. CONCLUSIONS

The good agreement between our theoretical model
experimental results suggests a physical picture for the w
propagation. In the intermediate frequency regime, the str
scattering causes the material properties of the medium
become renormalized, with the result that the effective m
dium in which the glass beads are embedded takes on s
of the character of the scatterers themselves. Since it is
cisely this renormalized effective medium that is sensed
the coherent ballistic wave, the phase and group veloci
become significantly affected by the scattering; as a res
both velocities exhibit considerable dispersion, even thou
they describe the propagation of the small fraction of
incident pulse that isnot scattered out of the forward direc
tion. To model this behavior, we determine the dispers
curve using a spectral function approach, in which we cal
late how the scattering properties of a coated elastic sp
are modified by the coupling to the embedding mediu
Thus we are able to accurately calculate the renormaliza
of the effective medium and hence to correctly account
the frequency and volume fraction dependence of both
phase and group velocities. Furthermore, by examining
energy densities as a function of frequency, we identify t
microscopic mechanisms for the velocity dispersion tha
observed in our experiments: In addition to resonant sca
ing from the glass beads, where a significant fraction of
energy is trapped in the solid particles, we demonstrate
existence of ‘‘tortuosity slowdown,’’ where the wave energ
is mostly confined to the tortuous fluid pathways. Since
bulk of the acoustic energy remains in the fluid, both of the
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effects cause the dispersion to become greater as the vo
fraction of the scatterers is increased, in agreement with
experimental results and with the quantitative predictions
our theoretical model.
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APPENDIX: WAVE SCATTERING BY A LIQUID-COATED
SOLID SPHERE IMMERSED IN AN EFFECTIVE

LIQUID MEDIUM

1. Governing equations

Consider a compressive wave incident along thez direc-
tion on a coated elastic sphere embedded in a uniform ef
tive medium, shown in Fig. 7. We denote the solid sphere
region 1, the fluid coating as region 2, and the outer effec
medium as region 3. Azimuthal symmetry dictates that
displacements in the three regions may be expressed as

uW i5ur
i eW r1uu

i eW u , ~A1!

where eW r , eW u , and eWf are unit vectors in spherical pola
coordinates. The displacementsuW i , which satisfy the elastic
wave equation in each regioni, can be decomposed int
longitudinal and shear parts by expressing the displacem
in terms of the potential functionsF i andC i , where

uW i5“F i1“3S ]C i

]u
eWfD . ~A2!

Both F i andC i satisfy scalar wave equations, given by

¹2F i1a i
2F i50 ~A3!

and

¹2C i1b i
2C i50, ~A4!

wherea i5v/cl
i andb i5v/ct

i , with cl
i5A(l i12m i)/r i and

ct
i5Am i /r i being the wave velocities of the longitudinal an

transverse waves, respectively.l i andm i are the Lame´ con-
stants, andr i denotes mass density. It should be noted t
theC potential exists only in the solid core region, i.e., on
C1Þ0.

2. Potential expansions in the three regions

The field potential in the effective medium, region 3,
composed of incident and scattered longitudinal waves.
incident plane wave can be expanded as

F3
~ inc!5F0eia3r cosu5F0(

n50

`

~2n11!i nj n~a3r !Pr~cosu!,

~A5!

where j n(x) is the nth-order spherical Bessel function an
Pn(x) is the nth-order Legendre polynomial. The scatter
field potential may be expressed as
me
ur
f

c-
s
e
e

ts

t

e

F3
sca5 (

n50

`

Anhn
~1!~a3r !Pn~cosu!, ~A6!

where hn
(1)(x) is the spherical Hankel function of the firs

kind. The total potential in medium 3 is given by

F35F3
inc1F3

sca. ~A7!

The field in the liquid coating layer~region 2! is also
longitudinal. Thus only one potential is involved, i.e.,

F25 (
n50

`

@Bnj n~a2r !1Cnnn~a2r !#Pn~cosu!, ~A8!

wherenn(x) is the spherical Neumann function.
In the solid core, i.e., in region 1, theF potential is given

by

F15 (
n50

`

Dnj n~a1r !Pn~cosu!, ~A9!

while theC potential may be written as

C15 (
n50

`

Enj n~b1r !Pn~cosu!. ~A10!

The expansion coefficientsAn , Bn , Cn , Dn , and En are
determined by the boundary conditions

ur
~3!ur 5b5ur

~2!ur 5b ,

t rr
~3!ur 5b5t rr

~2!ur 5b ,

ur
~2!ur 5a5ur

~1!ur 5a , ~A11!

t rr
~2!ur 5a5t rr

~1!ur 5a ,

t ru
~1!ur 5a50.

The scattering amplitudef (u) is determined from the set o
coefficients$An% and is given by

f ~u!52
i

a3F0
(
n50

`

Ane2 i ~np/2!Pn~cosu!. ~A12!

This is the basic equation used in the determination of
self-energy and the spectral function. The solution of th
boundary value equations also allows the displacement
each region to be obtained from the potential functions,
ing Eq. ~A2!.

3. Stress, strain, and energy

Once the wave displacements are obtained using
method outlined in the preceding subsection, it is straightf
ward to determine the energy density. The strain tensoeJ i

may be expressed in terms of the displacement vector a
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eJ i5 1
2 ~“uW i1uW i

“ ! ~A13!

and the stress tensortzj
i and the strain tensor are related

the law of elasticity

tzj
i 5l i~e rr 1euu1eff!12m iezj

i . ~A14!
om
,

d

ev

tz

iu

r,

.-P

e
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p
,
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ee
The energy densityEi is given by

Ei5
1
2 tJ i : eJ i1 1

2 r iv
2ui

2, ~A15!

wheretJ :eJ represents the scalar contraction of the stress
strain tensors.
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