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We study, both experimentally and theoretically, the ballistic propagation of ultrasonic wave pulses through
a random strongly scattering medium as a function of the volume fraction of the scatterers. The scattering
medium consists of a liquid suspension of monodisperse glass beads, whose concentration is varied by con-
trolling the upward flow of the liquid in a fluidized bed. At intermediate frequencies, where the acoustic
wavelength\ is comparable to the size of the glass bead scatterers, very strong scattering is observed, with the
scattering mean free path reaching values as low/2sAt high volume fractions of scatterers, the scattering
results in pronounced dispersion, as demonstrated experimentally by the strong frequency dependence found in
both the phase and group velocities. However, as the volume fraction is lowered, the dispersion is substantially
reduced, in marked contrast to recent predictions for electromagnetic waves. Our experimental results are
explained quantitatively by a theoretical model, based on a spectral function approach, that accounts for the
renormalization of the scattering within the medium, an effect that is greatest when the concentration of
scatterers is largest. The mechanisms underlying the frequency dependence of the velocities and their depen-
dence on volume fraction are further elucidated by examining the ultrasonic energy density, both inside the
scatterers and in the surrounding fluid. This allows us to show that the velocities are substantially slowed down
both by (i) resonant scattering from the glass spheres, where energy is trapped within the solid scatterers, and
by (i) tortuosity effects, where the wave energy is largely confined to the tortuous fluid pathways. These
results demonstrate convincingly why the phase and group velocities of acoustic waves vary strongly with
frequency at high volume fractions of scatterers, but only show weak dispersive effects at low volume frac-
tions. Furthermore, our microscopic picture of the dispersion gives a simple physical explanation of why its
volume fraction dependence is opposite to that expected for light and other electromagnetic waves, where the
velocity inside the scatterers is normally less than in the surrounding mef8ifi63-651X%98)10910-§

PACS numbefs): 43.35+d, 43.20+9, 62.30+d

I. INTRODUCTION dielectric materials[11-19. In fact, calculations of the
group velocity for light propagation in a colloidal suspension

In recent years there has been renewed interest aref strongly scattering particlel20—-22 predicted that the
progress in the study of the propagation of classical waves igroup velocity becomes strongly anomalous, exceeding the
strongly scattering inhomogeneous medig2]. For ex- speed of lightin vacuum over a substantial range of frequen-
ample, the realization that the diffusion approximation givescies and supporting the idea that the group velocity com-
an excellent description of the propagation of multiply SCat_ple’tely loses its physical'significanc'e as the velocity of bal-
tered classical waves has facilitated the investigation and eXiStic energy transport in such circumstances. However,

planation of a wide range of fascinating wave phenomena iﬁﬁcenﬁ measuremlen_ts for acoustic Wfﬁ[’gg]f_ ha(\j/e shown H
strongly scattering materials; these include coherent backhat the group velocity can remain well defined even in the
resence of strong resonant scattering, although the scatter-

scattering, continuous-wave transmission, pulse propagatiotl?1 does cause the velocity to vary strongly with frequenc
and frequency, spatial, and temporal correlati@sl10]. De- 9 y y gy q Y.

spite this progress, relatively little attention has been paid iThese acoustic experiments were explained using a spectral
P prog ! y P unction approach, which demonstrated how the group ve-

such materials to the weak ballistic component of the totarfoci,[y could be accurately calculated when there is strong

wave field that propagates _thro_ugh the medium WithOL_Jt Scatécattering due to shape resonank2s.

tering out of the forward direction. In a pulsed experiment, \ypile these recent experiments might appear to have re-
this .ballis.tic sig_nal carries important information about thegg)yed these guestions about the nature of the group velocity
medium, including the behavior of the phase and group Ve the intermediate frequency regime of multiply scattering
locitiesv, andvg, as well as the scattering mean free pathmaterials, important questions remain concerning the depen-
|s. Of particular interest is the behavior of the group veloc-dence of the group velocity on the volume fractigrof the

ity. In the intermediate frequency regime, where the wavescatterers. The original calculations for light0,21 were
length is comparable to the size of the inhomogeneities, thdone at low volume fractions, while the acoustic measure-
strong scattering may lead to very large dispersion, with thenents were performed at high volume fractions. Recently it
possible result that the group velocity may exhibit anoma-has been suggested that the pronounced dispersion predicted
lous behavior similar to that observed for optical propagatiorfor electromagnetic waves at low volume fractions of scat-
in homogeneouson the scale of the wavelengthbsorbing terers becomes washed out at high volume fractions
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[2,24,23, possibly offering an explanation for the differ- with an average radiua=0.438 mm, having been sieved
ences between the previous optical and acoustic results. Of®m a polydisperse distribution of spheres to limit the radii
interesting implication of these predictions is that the groupo a narrow range between 0.425 and 0.45 mm. The material
velocity for acoustic waves might have an even stronger frepgperties of the glass beads and fluid resulted in a very large

quency dependence at low volume fractions than at high Volz,ismatch in the acoustic impedange since the speed of
ume fractions and could indeed exhibit anomalous behavimgound in the fluid is 1.84 mmb and its density is 1.20

after all.
In this paper we investigate this question both experimen
tally and theoretically by studying the ballistic propagation
of acoustic wave pulses through a strongly scattering mat
rial as a function of the volume fraction of scatterg?$).

X 10° kg/m®, while the longitudinal velocity in the glass is
5.6 mmjus, the transverse velocity in the glass is 3.4 ms)/
and the density is 2.5010° kg/m®. Thus very strong scat-
e['ering is expected in the intermediate frequency regime. Two

Th tteri di ists of di I b ample cells were constructed, each with two plastic walls
€ scattering medium COnsIstS of MONOdISperse giass bea 8parated by metal spacers, which set the thickhexfsthe
suspended in a liquid mixture of water and glycerol, where

the i q ; tch ratio for lonaitudinal it samples to be either 7.76 or 12.2 mm, corresponding ap-
€ impedance mismatch ratio for longitudina’ acoustic roximately to 9 or 14 bead diameters, respectively. The
waves has a large value of approximately 7. The volum

fraction of the glass beads was varied by fluidizing the sus lquid, pumped in from the bottom of the cell, passed

. . . through a diffuser to achieve an even flow across the cell.
pension to counteract the sedimentation of the beads, aHOWFhe fluid pump was driven by a variable speed electric mo-

ing ¢ 1o be readily adjusted by controlling the flov_v rate.. At tor, giving fine control over the flow rate. Since the settling
high volume fractions of scatterers, pronounced dispersion '§peed of the beads depends on the volume fraction, changing

observed, consistent V.Vi.th previqu§ measurements of thﬁ’le flow rate in the fluidized bed allowed to be easily
group and phase velocities in a similar system of randoml)(/aried over an extended range of values

close-packed glass beads in wdt8]. However, as the vol- The measurements were performed in a large tank of wa-

ume fractpn IS '°We“?d' the varlatlo.n of the velocities with ter in order to provide efficient coupling between ultrasonic
frequency IS p.rogressn/.ely reduced, in 'T‘afked contrast to thﬁ‘ansducers and the sample. Several pairs of fairly wide-band
recltte nt pl’edICtIO?fS f?r I|gh%,.24,25. V\(éeelggerpz)retbthesg '€ 1-in.-diam plane-wave ultrasonic transducers were used, one
Sults using an €flective medium mo_c[ 2729, asedon - yransducer to generate the input pulse and the other to receive
a spectral functlon_approach, n Wh'ch each scattering Unit g, o ransmitted signal. Each pair had a different central fre-
treated as an elastic sphere coated with a layer of liquid. Thi uency, ranging from 1 to 5 MHz, allowing the samples to
m.odel shows hovy the substantial Increase in the dispersiog, stud’ied for wavelengths rangin’g from 0.8 to 6 bead radii.
W'th. vqlume fraction can be explamgd n _terms of a FeNOr"rhe transducers were aligned along a common axis with the
malization of the effective medium in which the sca'[terersst,jlmple cell placed between them, in the far field of the gen-
are embedded, an effect that becomes larger as the volu ?ating transducer '

fraction ¢ increases. In contrast to the usual situation for The transmitted. wave form that was detected by the re-
light, the e_Iast|c wave ve_locme§ |nS|de_ t.he sca_tterers ar(?:eiving transducer contained two components, a small ballis-
larger than in the surrounding fluid; thus it is possible to traptic pulse that consists of the unscattered or forward-scattered

acoustic wave energy in the pockets of fluid betwe_en th aves and a larger scattered component that is superimposed
glass bead scatterers, an eff_ect that becomes especially PISH the ballistic pulse at early times but also extends to much
nounced at high volume fractions of scatterers when the flui nger times as progressively longer and longer multiple

interstices become more enclosed. Th|s_ effect IS accurate cattering path lengths are traversed by the ultrasonic pulse
captureq by our coated sphgrg effective med_lum mode 'Figs. 1@ and 1b)]. To measure the group and phase ve-
which gives an excellent description of the experimental dat cities, we need to extract this ballistic pulse from the domi-

for the phase and group velocities, successfully elucidating_ . multiply scattered waves. This can be achieved in ultra-

the underlying _physu:_s of the strong volume frgcnon Olepen'sonic experiments using piezoelectric transducers by taking
dence of the dispersion resulting from acoustic shape res

. . : . %{dvantage of the fact that the ballistic pulse is coherent, both
nances in the intermediate frequency regime. spatially and temporally with the incident pulse, while, in
contrast, the scattered waves arrive incoherently at the detec-
tor on account of the different path lengths traveled through
the sample and the different angle-dependent phase shifts

The volume-fraction dependence of ballistic transport waexperienced on scattering. Since the transducer detects the
investigated experimentally using pulsed ultrasonic techaverageinstantaneous field of the transmitted wave over the
nigues because their ability to detect the field, rather than th&ont face of the piezoelectric element, much of the scattered
intensity, allows the weak ballistic pulse to be detected evemltrasound is canceled in the detector due to the random
when it is buried in a much larger incoherent signal due tophase fluctuations of the scattered waves across the trans-
multiply scattered sound. To vary the volume fraction ofducer face, provided the area of the detector is larger than the
scatterers in our system, we used a sample cell consisting speckle sizéor coherence argaln our experiment, in which
a fluidized bed, in which a 75% glycerol-25% water mixturethe detector is placed in the near field, the speckle size of the
flowed upward to counteract the sedimentation of suspendestattered waves is of order the square of the waveldiédth
glass beads. This choice of fluid was made to allow the beadso that, typically, several hundred speckles interfere destruc-
to be conveniently suspended using modest flow velocitiedjvely in the detector, giving good cancellation of the scat-
while avoiding the unwanted absorption associated with veryered component of the wave field and leaving the spatially
high fluid viscosities. The glass beads were monodisperseoherent ballistic pulse unaffected. To further cancel scat-

Il. EXPERIMENT
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FIG. 1. Transmitted wave forms at volume fractions of 0.20 and
0.40, for several representative bead configuratigas and (b), FIG. 2. The top panel shows the fast Fourier transfo{ftsTs
top], showing the superposition of the coherémllistic) and inco- ~ of the input pulse and the ballistic pulse transmitted through a
herent(scatterejl components of the total field. The ballistic pulse Sample with¢=0.45 and_=7.76 mm. The bottom panel shows the
is extracted by ensemble averaging the total fields over a larggatio of the transmitted to input FFTs, revealing a deep minimum in
number of bead configurations, 10 000 in this exanfifdeand (d), the transmission near 2 MHz where the scattering is strongest.
bottom]. Here the central frequency in the pulse was 2.5 MHz and
the sample thickness was=7.76 mm. At this frequency, the ratio clearly emerges with an excellent signal-to-noise ratio.
of sample thickness to mean free pdthls is 4.3 and 8.1 for Through the use of a large detector, further cancellation of
¢=0.20 and 0.40, respectively. scattered signal was achieved before ensemble averaging

was performed.

tered sound we also averaged the detected signal over many Most of the experiments were performed using short input
repetitions of the input pulse using a digital oscilloscope.Pulses, so that the frequency content of the pulse extended
The beads were in continuous random motion, moving ®Vver the entire frequency spectrum of the transduegr
mean distance that was negligibly small over the time theProximately 50% of the central frequencyfo measure the
pulse takes to travel through the sample, but which was sigfrequency dependence of the scattering mean free path, we
nificant (appreciable compared to the wavelengtrer the first digitized the input pulse and the unscattered ballistic
time between repetitions of the input pulse. Thus the averageulse, determined using the technique described above, and
over many repetitions of the input pu|se was in effect anthen Compared the magnitudes of the fast Fourier transforms
average over many different ensembles of the scatterers atfFT9 of the pulses as shown in Fig(&? for a sample with

led to further cancellation of the scattered component of thé& volume fraction of 0.45 and a thickness of 7.76 mm. In Fig.
transmitted sound, as is demonstrated in Fig. 1. In order t8(b) we show the ratio of the two FFTs, thus determining the
measure the full transmitted ultrasonic field for this demon-Magnitude of the ballistic signal over a bandwidth from
stration, we replaced the 1-in.-diam detecting transducer wit@bout 1 to 3.5 MHz by compensating for the frequency-
a miniature hydrophone, which had a size smaller than théependent response of the transducers. At low frequencies,
ultrasonic wavelength, thereby avoiding phase cancellationd€ ratio is almost unity, showing that there is very little
across the face of the detector. In Fig$a)land Xb) we attenuation of the ballistic pulse, corresponding to the upper
compare the detected fields at two volume fractions, respe@nd in frequency of the weak Rayleigh scattering regime.
tively, by overlaying the detected fields for ten different en-However, as the frequency is increased above 1 MHz, the
sembles of the scatterers. At the lower volume fraction ofatio drops precipitously, reaching a deep minimum at about
0.20 where the scattering is weak&ig. 1(a)], evidence of 2 MHz as a result of the strong scattering in the sample. The
the coherent component of the field can be seen by eye, assguare of this ratio gives the frequency-dependent reduction
substantial fraction of the detected field at ear|y t|mm in the transmitted intenSity of the ballistic Signal, from which
first six or seven oscillations in the pujsarives in phase for the scattering mean free pathwas determined using the
each ensemble of the beads; the ballistic signal that is exdéefinition

tracted by ensemble averaging the transmitted signal over

10 000 realizations of the random configurations of the beads '_
is shown in Fig. 1c). When the volume fraction is increased lo
to 0.40, the true power of this configuration averaging tech-

nique becomes manifest. As a result of the increased scattewvherel is the transmitted intensity, is the input intensity,

ing, the relative amplitude of the ballistic to scattered souncand L is the sample thickness. For the thicker sample, the
is decreased and a coherent component is not readily apparerresponding FFT ratio disappeared into the noise level
ent[Fig. 1(b)]; however, after ensemble averaging the field,near the minimum at 2 MHz, requiring a different approach.
again over 10 000 configurations of the beads, the scatterdd order to take transmission data in this region, we had to
fields are effectively eliminated and the small ballistic signaluse a series of longer pulses, each with a narrow frequency

=exd —L/lg], @
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FIG. 3. The first column shows the unfiltered short input pulse
and the resulting transmitted pulses through two sample thicknesses 1501
(L;=7.76 mm andL,=12.2 mnj. The second and third columns ) ) . . ) ) )
show the result of digitally filtering these short pulses at two differ- 2 4 6 2 4 6
ent central frequencies, indicated at the top of the figure. kfa

bandwidth centered on the frequency of interest, thereby ex- FIG- 4. Phase velocities,, at four different volume fractions,
cluding from the pulse any large high or low frequency Com_plot_ted against frequency normalized by 'Fhe fluid vel_oc_lty and bead
ponents that would have saturated the detection electronics {dlus- The datésymbol§ are compared with the predictions of our
the increased sensitivity needed to measure these weak sF-eCtlve .med'um the?ryso"d “nes)'. The dashed line represents
nals &e velocity of sound in the bulk fluid.

To measure the group and phase velocities, we used FFTs . . . )
to digitally filter the detected pulses to form Gaussian pulse&'Sing the condition that the velocity must be independent of
with a relatively tight bandwidtli<10%) centered at several sample thickness to resolve the possible ambiguity of one or

frequencies spanning the bandwidth of the pulse. An exMore multiples of Zr in the total phase shift of the transmit-
ample of this technique is shown in Fig. 3 for data taken at 46d Pulsé and hence to identify the phase velocity correctly.

volume fraction of 0.45, some of which is identical to that >MPle inspection of Fig. 3 indicates that the pulses at 2.7

used to generate the FFTs shown in Fig. 2. The unfilteredy/HZ travel faster than the 1.7-MHz pulses, confirming that

short pulses in the first column show very strong dispersiori"€ group velocity is slower at the lower frequency. The
effects, with a clear separation of faster high frequency com3rOUpP Velocity was measured quantitatively by determining

ponents in the pulse from slower low frequency components_t,he envelopes of the incident and transmitted pulses, measur-

an effect that becomes more pronounced as the sample thickld the time interval between the peaks of the two pulse
ness increases and the pulse becomes broader and more 8velopes, and calculating the velocity from the ratio of
torted. It is interesting that these results are reminiscent of@MPle thickness to pulse envelope propagation time.

the effects predicted for electromagnetic pulse propagation in

d|§per3|ve dlelgctrlcs Wlth strong resonant absorption, as Ill. RESULTS AND DISCUSSION

originally described using asymptotic methods by Sommer-

feld [30] and Brillouin[31] and more recently by Oughstun Using the experimental techniques described in the pre-
and co-workerg12,18. Evidently, the propagation of this ceding section, we investigated the ballistic propagation of
short distorted pulse cannot be described by a single value eftrasound through samples with volume fractions of glass
the group velocity. However, the frequency dependence odfeads ranging from 0.21 to 0.61. Some of our measurements
both the group and phase velocitiesn be accurately deter- of the phase velocity at four volume fractions in this range
mined from these data by using a Gaussian filter function t@re shown in Fig. 4. At the lowest volume fraction, the phase
narrow the frequency bandwidth of the pulse, so that dispervelocity is very close to the velocity of sound in the bulk
sive distortion of the pulse is reduced and the group velocityluid, indicated by the dashed line, over the entire frequency
description of pulse propagation is appropriate. The resultsange. However, as the volume fraction is increased, a stron-
of this filtering process for two central frequencies of 2.7 andger frequency dependence develops, reaching a maximum
1.7 MHz are shown in the second and third columns of Figvariation with frequency of about 40% &t=0.61, which is

3, respectively. Although small dispersion effects can still beabout 7 times greater than &=0.21. Our group velocity
seen in the slight broadening of the pulses with increasinglata (Fig. 5 show the same volume fraction trends, with
sample thickness, the filtered pulses have a well defined cemelatively little dependence on frequency at the lowest vol-
tral frequency and have symmetric peaks, so that both theme fraction but with progressively larger variations in the
phase and group velocities can be determined. The phadeequency dependence of the velocity as the volume fraction
velocity was measured from the time taken by the carrieincreases. The variation of the group velocity is in general
frequency oscillations to travel through both of the samplesmuch larger than that of the phase velocity; for the most
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LT : ' I— ‘ ' ] spection of the figure shows that the position of the mini-
23 mum in the mean free path moves to slightly lower frequen-
cies as¢ increases; the positions of the minima in the phase
and group velocities also show the same trend, confirming
Nemant™ i that the reduction in the wave velocities is caused by scatter-
Bl ] ing. The scattering mean free path data also indicate that the
scattering in this system becomes very strong in this fre-
quency range, as demonstrated by the fact that at the mini-
mum inlg for $=0.61, the mean free path becomes smaller
than one-half the wavelength of sound in the sample.

The results of these experiments show that despite the
strong scattering, the group velocity is well behaved, exhib-
iting no anomalous properties such as negative or infinite
values, over the entire range of frequencies and volume frac-
tions investigated. One of the most striking features of our
experimental results is the strong volume fraction depen-
dence of both velocities. At low volume fractions there is
weak dispersion, i.e., the velocities have little frequency de-
pendence, but as the volume fraction is increased the disper-
sion increases dramatically. At high volume fractions this
strong dispersion is similar to that found in our earlier ex-
periments[23] on randomly close-packe$=0.63 glass
beads in water. Our current results show clearly that the vol-

FIG. 5. Frequency dependence of the group velocitjeat four ~ ume fraction dependence of the dispersion seen in this acous-
volume fractions, showing a comparison of the datambolg with  tic system is opposite to that predicted for electromagnetic
our effective medium theorysolid lines. The dashed line repre- waves[2,24,25. Thus the idea that the most dramatic dis-
sents the velocity of sound in the bulk fluid. persion effects should be observed at low volume fractions

of scatterers does not apply in acoustics, a result that we now
concentrated sample the group velocity changes by morexplain theoretically using a simple spectral function ap-
than a factor of 2, reaching values less than 1 psmiear proach.
the rather sharp minimum &;a~2-2.5. Near this mini- To interpret these experimental results, we use a spectral
mum, the group velocity is well below all the bulk velocities function approach, which transcends the limitations of the
of both the solid and fluid constituents of the sample, sugtraditional coherent potential approximatio@PA) and al-
gesting that the scattering is having a strong effect on théows coherent wave propagation to be described quantita-
ballistic propagation at the higher volume fractions. Mea-tively in the strongly scattering intermediate frequency re-
surements of the scattering mean free f&ily. 6) shed fur-  gime where the wavelength is comparable to the size of the
ther light on the connection between strong scattering anthhomogeneitie§23,27—29. To express this approach math-
the propagation velocities. The mean free path has a preematically, let us first use the scalar wave case to illustrate
nounced dip fok;a between 2 and 3, which corresponds tothe basic principles, although the actual calculations took
the dips seen in both the phase and group velocities. Thifully into account the elastic nature of ultrasonic waves in
means that when scattering is at its strongest, the wavihe solid spheres, presented in the Appendix. The scalar
speeds of the ballistic pulse are greatly reduced. Careful invave equation may be written as
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Eq. (6) can either disappear, jump abruptly asvaries, or
become multivalued. In other words, the meaning of the
CPA solutions becomes suspect. Instead of adopting this
CPA condition, we find the excitations of the system by
looking for the maxima of-1m Ge(w,IZ)=Im 2;,i(w), the so-
called spectral function. Since the self-eney(w) is
proportional to the forward-scattering amplitude, the peaks
in the spectral function occur at the valuesspfindk when

the scattering is a minimum and thus identify the propagating
(@ (b) modes of the system. From E@}) it can also be seen that

FIG. 7. In a random medium composed of a dispersion ofthe spectral function peaks af=vk” when the CPA con-
sphereq(a), the basic structural unit may be regarded as a coate(giltlon (6) is satisfied. Thus the spectral function approach

: X . reproduces the CPA in the low frequency regime where it is
sphere(b) embedded in & uniform medium of sp olk successful. Moreover, I gives the width of the peaks. As

Im X2 —0 (true uniform mediuny the peaks approachfunc-
)lp:O’ 2) tions. In the intermediate frequency regime the peaks gener-
ally possess finite widths, implying that the modes identified

2

w
<V2+ v(r)

, i by the spectral function peaks are quasimodes.
where ¢ denotes the wave amplitude andr) is the local In Fig. 8 we show a contour plot of the spectral function

phase velocity. A slightly different way of writing the same i, e frequency—wave-vector plane for two representative
equation is to add and subtract a constant term values of the glass-bead volume fraction. Note that there are
02 [0 o2 no adjustable parameters in this calculation since the spectral
V2+7_(7_ —2—) $=0. (3)  function is determined by the scattering properties of a
vo \vg vi(r) coated elastic sphere embedded in the effective medium;
. . . - . . these are uniquely determined by the velocities and densities
Here v, is an “effective medium” wave speed, which IS ot ye glass beads and fluidiven in Sec. I, the effective
treated as a dummy variable. One can write the conflguramedium densitygiven by the average density of the medium

tionally averaged Green'’s functidB.(w,k) as Pm= PPglasst (1~ #) pauial, and the thickness of the fluid
coating (determined by requiring that the volume of glass
Gl o= 1 4  @nd fluid be conserved, so thata= ¢~ 13 whereb is the
elw.k)= (4) radius of the coating Since the peaks in the spectral func-

27,2 1,2_ >
o vp—k" =2 (@,k) tion pick out the quasimodes with the least scattering, they

hereS. s th i lculataslati he ref form the dispersion curve, as shown for the two volume frac-
wherez,, Is the se -energy caicu ateelative to the refer- g jllustrated in Figs. @ and 7b) by the solid white
ence medium spead, andk is the Fourier transform vari- curves. In a pulse propagation experiment, the frequéorcy

able off". To the leading order in the density of scatterers more correctly the frequency spectruia set by that of the
input pulse and the properties of the medium determine the
2

~ntvo(0), (5 corresponding wavelength of the excitation that propagates
through the sample. Thus, to determine the dispersion curves
where n is the density of the scatterers ard (0)  that correctly describe the experimental situation from the

=f,,(0)/4m, f, (0) being the forward-scattering amplitude. spectral function, we use a peak-finding routine that scans

In a colloidal suspension, the inhomogeneous medium ma(zhe contour plots for the peak v.alues.of wave veclor at each
be viewed as a collection of basic units consisting of coate cons:ﬁnldfrequemé[532]. .T[\Ie:'gll_spersu?[ﬂ_ curvestlwer';e trll.en.
spheres, shown in Fig. 7. The scattering problem is thereforgmtoothe h'ui":‘g a 'DO"? el SmMoot 'qﬁ routine 36 Imi-
that of a coated sphere embedded in a homogenized effectiyi © e NIGN Trequency “pixel” noise in the scanned posi-

. . . o Yions of the peaks, arising from the finite resolutionurand
mec1|um yvhose W_ave speed is glver?dqy |den_t|f|ed at each k with which the spectral function was calculated. This pro-
(@,K) point asvo=w/k. The scattering amplitude can then coqre allows us to determine the true dispersion c[B8

be obtained as the.solution .to the corresponding boundaryiiy sufficient precision to reliably determine the propaga-
value proble_m, as discussed in the Appendix. Thus, from Eg;qn velocities from the spectral function.

(5) we obtain the complex values of the self enedy, We determine the phase velocity,= w/k for each vol-
=2 ,(w) at each point in thev-k plane. Coupled with the ume fraction of beads from the ratio of frequency to wave
condition thatvy=w/k, the Green’s function is then given vector along the dispersion curve, giving the solid curves

Vo

by Ge(w,IZ) = —2;,}<(w). shown in Fig. 4. To account for the small 5% variation in the
The traditional CPA condition for the determination of the size of the glass beads, the theory curves were also averaged
effective medium velocity is that over the bead size distribution. Excellent quantitative agree-
ment with the data is found at all volume fractions, with the
ReEUOE n Re[tUO(O)] =0. (6)  theory correctly predicting the magnitude of the phase veloc-

ity, as well as both the frequency and volume fraction depen-
However, in the strongly scattering intermediate frequencydence. The group velocityy=dw/dk is calculated by nu-
regime,> becomesk dependent. As a result, the solution of merically differentiating the dispersion curve to obtain the
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FIG. 9. (a) Average energy densities, normalized by the energy

density of the incident wave, in the coated fluid regi@}) and in

the solid core regionH;) plotted as a function of frequencyb)

Frequency dependence of the ralig/E;,. The large peak dt;a

=2.6 corresponds to the first minimum in the velocity dispersion

and the physical situation where the wave energy is largely trapped

in the interconnected fluid pathway&See Fig. 10. The arrows

lized f / d effecti i ke, indicate the positions of the scatterer resonances. They correspond
normalized frequencyalv; and effective medium wave vect to the three successive minima in the velocity dispersions, seen

The magnitude of the spectral function is indicated by the colorsmost clearly in the group velocity data shown in Fid. 5
with red being high, yellow to green being intermediate, and blue y group y g->

being low. The dispersion curysolid white ling is determined by
the peaks in the spectral function and falls below the dispersion
curve for the bulk fluid(dashed ling over most of the frequency
range.

ka

FIG. 8. (Color Contour plot showing the spectral function at
volume fractions of(a) ¢=0.20 and(b) ¢=0.61, as a function of

solid curves plotted in Fig. 5. Again, very good agreement
with the data is found, with the considerable structure in the
frequency dependence of the group velocity being correcth
predicted at all frequencies and volume fractions investi-
gated.

The same theoretical model can be used to estimate tr::>
scattering mean free path, which is calculated from the sca
tering cross section of the coated elastic splisee the Ap- 4.0
pendiX. This was determined in two equivalent ways, either
from the peak of the spectral functigwhich is equal to the
imaginary part of the reciprocal of the self-energlyrough
the use of the optical theorem or by integrating the square ¢
the scattering amplitude over all angles. Here the model i
not as successful, as it underestimates the magnitude of tl 1.0
scattering because it assumes a uniform environment arout.u
each sphere, in contrast with the actual physical situation in g5 10 (Color Energy contouxin arbitrary unit$ in a single
which there are additional contributions to the scatteringscatterer at frequendgia= 2.6. The wave is incident on the coated

from the random configurations of the neighboring spheressphere from the left, as indicated by the arrows. The magnitude is
We account for this effect empirically by dividing the theo- indicated by color, with red being the highest and blue being the
retical predictions by a phenomenological scaling parametebwest. Note that the energy density indicated by the upper scale
p,, Which is taken to be independent of frequency and iSfor the liquid coating is almost 10 times that indicated by the
obtained by fitting theory to experiment. This fitting param- lower (for the solid sphene
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eterp, is found to range from 1.6 to 2 ap increases from the electromagnetic energy density is very large inside the
0.2 to 0.6, consistent with exact multiple sphere scatteringcatterers and small outside. At logy this leads to a long
calculations that account explicitly for this additional scatter-dwell time of the waves inside the scatterers and large dis-
ing effect[28]. As shown by the solid curves in Fig. 6, rea- persion effects. However, asincreases, the resonances be-
sonable agreement with the data is obtained, especially &ome smeared out, as the wave energy that is predominantly
high volume fractions, where the theory does an excellengoncentrated in the scatterers couples from one scatterer to
job of predicting the location of the first minimum in the the next, and the dispersion is redu¢@c?4,29. In contrast,
scattering mean free path. It is worth noting that the coated? OUr acoustic experiments the velocities of the elastic
sphere calculation is much more successful in predicting th&/aves inside the solid scatterers are higher than in the sur-
location of this minimum irl than is a calculation based on rounding medium, causing most of the wave energy to be
the scattering cross section of single bare glass sphere fipncentrated in the fluid, as seen in Figs. 9 and 10. As a

water, shown by the dashed curves. This demonstrates t#gSUlt, the two mechanisms that lead to wave dispersion in
power of our effective medium technique in accounting forthe acoustic case, tortuosity slowdown and resonant scatter-

the multiple scattering effects that are very important at higH"d in the spheres, are both more effective at high volume
volume fractions. fractlons of scatterers. It should be clear that the tortuosity
To explain the strong volume fraction dependence of theffect is most pronounced at larger values gfsince the

velocities seen in the experiments, we calculated the averad@tuosity of the fluid pathways increases with the volume
energy densities as a function of frequency both inside th action of scatterers as the pockets of fluid surrounding the
glass beadgregion 1 and in the fluid coatingregion 2. scatterers shrink in size. Moreover, the effect of the resonant

This calculation is formulated in Appendix and the results aSCattering in the spheres is to divert some of the wave energy

$=0.61 are shown in Fig. 9. The average energy densitieg,rom the fluid into the spheres, where the waves become

normalized by the energy density of the incident wave, ardartially trapped, thus also slowing down the propagation.
plotted in Fig. 9a). This figure clearly demonstrates that the However, for acoustic waves the majority of the wave energy
energy density in the fluid layer is much higher than in thesStill remains in the fluid and as a result the resonances do not

solid spheres at all frequencies and delineates the structure Rfcome washed out at high volume fractions jAscreases,
the frequency dependence that results from the scattering?e waves spend a greater fraction of their time partially
While the normalized energy density in the fluid layer showstf@PPed in the spheres simply because there are more of
only a weak dependence on frequency at high frequencieg,‘em; _thus the magnitude qf the d|spers_|on increases corre-
E, is seen to exhibit a maximum nele@a~2, corresponding  SPONdingly, in agreement with our experiments.
to the resonant condition that the wavelength in the fluid
layer\; equals half the circumference of the solid sphere. As
expected, this resonance weakens as the volume fraction de-
creases and the size of the fluid pockets between the beads The good agreement between our theoretical model and
increases. In contrast, the energy density in the glass beadgperimental results suggests a physical picture for the wave
E, exhibits three peaks at higher frequencies, which correpropagation. In the intermediate frequency regime, the strong
spond to resonant scatterings by the solid spheres. By conseattering causes the material properties of the medium to
paring Fig. 9a) with Fig. 5, it can be seen that the peaks in become renormalized, with the result that the effective me-
E, correspond to the high frequency minima of the groupdium in which the glass beads are embedded takes on some
velocity, indicating that strong resonant scattering can indeedf the character of the scatterers themselves. Since it is pre-
slow down the propagation of acoustic waves. However, itisely this renormalized effective medium that is sensed by
should also be noticed that there is no resonant scattering the coherent ballistic wave, the phase and group velocities
the spheres associated with the first and the largest dip in tHeecome significantly affected by the scattering; as a result,
group velocity. Instead, the energy density rafig/E, ex-  both velocities exhibit considerable dispersion, even though
hibits a strong peak at that frequency, seen in F{§),9n-  they describe the propagation of the small fraction of the
dicating that most of the wave energy is trapped in the fluidncident pulse that isiot scattered out of the forward direc-
layer. This is clearly delineated in Fig. 10, where the energytion. To model this behavior, we determine the dispersion
density in a liquid-coated solid sphere, embedded in theurve using a spectral function approach, in which we calcu-
renormalized effective medium, is plotted as a function oflate how the scattering properties of a coated elastic sphere
position fork;a=2.6. In this frequency regime, the trapping are modified by the coupling to the embedding medium.
of wave energy in the fluid causes wave propagation to slowhus we are able to accurately calculate the renormalization
down via a different physical mechanism: Here the slow-of the effective medium and hence to correctly account for
down is due to the tortuosity of the connected fluid pathwayghe frequency and volume fraction dependence of both the
rather than resonant scattering by the solid spheres. phase and group velocities. Furthermore, by examining the
This microscopic picture of wave propagation in our energy densities as a function of frequency, we identify two
acoustic system also provides the basis for understandingicroscopic mechanisms for the velocity dispersion that is
why the volume fraction dependence of the dispersion i®bserved in our experiments: In addition to resonant scatter-
opposite to that found for electromagnetic wavesing from the glass beads, where a significant fraction of the
[2,24,25,34. For electromagnetic waves, the velocity inside energy is trapped in the solid particles, we demonstrate the
the solid scatterers is normally lower than in the surroundingexistence of “tortuosity slowdown,” where the wave energy
medium since the scatterers usually have the higher dieleis mostly confined to the tortuous fluid pathways. Since the
tric constant. Consequently, in the vicinity of Mie resonancesulk of the acoustic energy remains in the fluid, both of these

IV. CONCLUSIONS
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effects cause the dispersion to become greater as the volume o
fraction of the scatterers is increased, in agreement with our 3= E Anhf)(asr)Pn(cos 0), (AB)
experimental results and with the quantitative predictions of n=0

r theoretical model. . . . .
our theoretical mode where hY(x) is the spherical Hankel function of the first

kind. The total potential in medium 3 is given by
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APPENDIX: WAVE SCATTERING BY A LIQUID-COATED

SOLID SPHERE IMMERSED IN AN EFFECTIVE
LIQUID MEDIUM *
®y= 2, [Bnjn(azr)+CoNn(azr)IPy(c0s 6), (A8)
1. Governing equations n=0

Consider a compressive wave incident along ztdrec-
tion on a coated elastic sphere embedded in a uniform effeawheren,(x) is the spherical Neumann function.
tive medium, shown in Fig. 7. We denote the solid sphere as In the solid core, i.e., in region 1, thk potential is given
region 1, the fluid coating as region 2, and the outer effectivéy
medium as region 3. Azimuthal symmetry dictates that the
displacements in the three regions may be expressed as - )

. ®1= > Dpjn(@sf)Py(cos6), (A9)
a=u'g +ulé,, (A1) n=0
. - . . : while the W potential may be written as
where €, €,, and €, are unit vectors in spherical polar
coordinates. The displacements which satisfy the elastic
wave equation in each region can be decomposed into o
longitudinal and shear parts by expressing the displacements W= > Epjn(B1r)Py(cos6). (A10)
in terms of the potential function®; and¥;, where n=0

P The expansion coefficientd,, B,,, C,, D,, andE, are

. oV
U=Ve+Vx|—r e(,,). (A2)  determined by the boundary conditions

(3) —y@
Both ®; and ¥, satisfy scalar wave equations, given by U o=l 2,

V2P, + a?d,=0 (A3) 7 i=6= 71 lr=p,

and Pl r—a=uft s, (A1)
Vzlpi+ﬁi2\[ri:0, (A4) 7'(rrZ)lr:a: T£r1)|r=ar

whereai=w/ci and,8i=w/cit, with c:= VN +2ui)/ p; and 7] —a=0.

ci=\ui/p; being the wave velocities of the longitudinal and

transverse waves, respectively.and u; are the Lameon-  The scattering amplitud&(6) is determined from the set of
stants, anc; denotes mass density. It should be noted thatoefficients{A,} and is given by

the W potential exists only in the solid core region, i.e., only

¥, #0. R .
! f(0)=— > A "p (cosh). (Al2)

az®y =0

2. Potential expansions in the three regions

This is the basic equation used in the determination of the
self-energy and the spectral function. The solution of these
Boundary value equations also allows the displacements in
each region to be obtained from the potential functions, us-
ing Eq. (A2).

The field potential in the effective medium, region 3, is
composed of incident and scattered longitudinal waves. Th
incident plane wave can be expanded as

DY = el s’ cosl= @Onzo (2n+1)i"j n(asr) P, (cos 6),

(A5) 3. Stress, strain, and energy
Once the wave displacements are obtained using the

where j,(x) is the nth-order spherical Bessel function and method outlined in the preceding subsection, it is straightfor-

P,(x) is the nth-order Legendre polynomial. The scatteredward to determine the energy density. The strain tessor

field potential may be expressed as may be expressed in terms of the displacement vector as
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ciz LV +0V) (A13) The energy densit¥; is given by
and the stress tenserk,_f and the strain tensor are related by Ei=3 e+ %piwzuf, (A15)

the law of elasticity
wherer: e represents the scalar contraction of the stress and

(A14)  strain tensors.

Tre=Ni( € T €ggt €40) T 211 €.
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